By Topic

Detecting Phenotype-Specific Interactions between Biological Processes from Microarray Data and Annotations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ansari, N.A. ; Microsoft Corp., Redmond, WA, USA ; Bao, R. ; Voichita, C. ; Draghici, S.

High throughput technologies enable researchers to measure expression levels on a genomic scale. However, the correct and efficient biological interpretation of such voluminous data remains a challenging problem. Many tools have been developed for the analysis of GO terms that are over- or under-represented in a list of differentially expressed genes. However, a previously unexplored aspect is the identification of changes in the way various biological processes interact in a given condition with respect to a reference. Here, we present a novel approach that aims at identifying such interactions between biological processes that are significantly different in a given phenotype with respect to normal. The proposed technique uses vector-space representation, SVD-based dimensionality reduction, differential weighting, and bootstrapping to asses the significance of the interactions under the multiple and complex dependencies expected between the biological processes. We illustrate our approach on two real data sets involving breast and lung cancer. More than 88 percent of the interactions found by our approach were deemed to be correct by an extensive manual review of literature. An interesting subset of such interactions is discussed in detail and shown to have the potential to open new avenues for research in lung and breast cancer.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )