By Topic

Force-based variable compliance control method for bilateral system with different degrees of freedom

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Naoki Motoi ; Division of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, 240-8501, Japan ; Ryogo Kubo ; Tomoyuki Shimono ; Atsuo Kawamura

This paper proposes the force-based variable compliance control method for a bilateral system which consists of master and slave robots with different degree of freedom (DOF). In order to control the bilateral system with this assumption, “bilateral control between master and slave robots for task realization” and “automation control for adaptation to environment in contact with a slave robot” are necessary. In this paper, “automation control for adaptation to environment in contact with a slave robot” is focused on. Considering the automatic control of slave system, the control method should be switched according to the contact condition. In the case of non-contact motion, the position of the slave system is not decided by using the conventional force controller. Therefore, unexpected contact between the slave system and the object may occur. In order to avoid this unexpected contact motion, the position of slave system should be controlled in the case of non-contact motion. When the slave system contacts the object, the force control should be implemented to achieve the stable contact. In this paper, the force-based variable compliance control method is proposed to achieve 2 desired motion. The validity of the proposed method is confirmed by the experimental results.

Published in:

2012 12th IEEE International Workshop on Advanced Motion Control (AMC)

Date of Conference:

25-27 March 2012