By Topic

An iterative ellipsoid-based anomaly detection technique for intrusion detection systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Suthaharan, S. ; Dept. of Comput. Sci., Univ. of North Carolina at Greensboro, Greensboro, NC, USA

Intrusion detection datasets play a major role in evaluating machine learning techniques for Intrusion Detection Systems. The Intrusion detection datasets are generally very large and contain many noncontributing features and redundant data. These drawbacks lead to inaccurate intrusion detection and increased computational cost when machine learning techniques are evaluated. Several data cleaning techniques have been proposed to eliminate redundant records and noncontributing features. These techniques reduce the size of the datasets significantly and make the characteristics of the data closer to the characteristics of intrusions in a real network. This paper identifies anomaly problems in normal and intrusion attacks data, and proposes an ellipsoid-based technique to detect anomalies and clean the intrusion detection datasets further. Publically available KDD'99 and NSL-KDD datasets are used to demonstrate its performance. It reveals an interesting property, i.e. monotonically decreasing behavior, of the NSL-KDD dataset.

Published in:

Southeastcon, 2012 Proceedings of IEEE

Date of Conference:

15-18 March 2012