By Topic

Analysis of frequent patterns in dyeing processing system using association rule mining algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. S. Saravanan ; Dr. R.R. & Dr. S.R. Tech. Univ., Chennai, India ; G. Thomas Bellarmine ; R. J. Rama Sree

This article proposes a simple frequent pattern mining algorithm using link structure. The “LinkRuleMiner” has a distinct feature that it has a very limited and precisely predictable main memory cost and runs very quickly in memory based settings. Moreover, it can be scaled up to very large databases using database partitioning. This article analyzes the coloring process of dyeing unit using newly proposed association rule mining algorithm “LinkRuleMiner” using frequent patterns. These frequent patterns have a confidence for different treatments of the dyeing process. These confidences help the dyeing unit expert called dyer to predict better combination or association of treatments. This article also proposes to implement LRM algorithm to the dyeing process of dyeing unit, which may have a major impact on the coloring process of dyeing industry to process their colors effectively without any dyeing problems, such as pales, dark spots on the colored yarn. This article shows that LinkRuleMiner has an excellent performance for various kinds of data to create frequent patterns, outperforms currently available algorithms in dyeing processing systems, and is highly scalable to mining large databases. It is a revised algorithm of HMine that does not need any adjustment of links. The revised algorithm has comparable performance with the original version and can be easily extended to use in parallel environment. Hence this article mainly contributes more on knowledge discovery of various shades of the color in the dyeing process.

Published in:

Southeastcon, 2012 Proceedings of IEEE

Date of Conference:

15-18 March 2012