By Topic

Sparsity Order Estimation and its Application in Compressive Spectrum Sensing for Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yue Wang ; Res. Dept. of Hisilicon, Huawei Technol. Co., Ltd., Beijing, China ; Zhi Tian ; Chunyan Feng

Compressive sampling techniques can effectively reduce the acquisition costs of high-dimensional signals by utilizing the fact that typical signals of interest are often sparse in a certain domain. For compressive samplers, the number of samples Mr needed to reconstruct a sparse signal is determined by the actual sparsity order Snz of the signal, which can be much smaller than the signal dimension N. However, Snz is often unknown or dynamically varying in practice, and the practical sampling rate has to be chosen conservatively according to an upper bound Smax of the actual sparsity order in lieu of Snz, which can be unnecessarily high. To circumvent such wastage of the sampling resources, this paper introduces the concept of sparsity order estimation, which aims to accurately acquire Snz prior to sparse signal recovery, by using a very small number of samples Me less than Mr. A statistical learning methodology is used to quantify the gap between Mr and Me in a closed form via data fitting, which offers useful design guideline for compressive samplers. It is shown that Me ≥ 1.2Snz log(N/Snz + 2) + 3 for a broad range of sampling matrices. Capitalizing on this gap, this paper also develops a two-step compressive spectrum sensing algorithm for wideband cognitive radios as an illustrative application. The first step quickly estimates the actual sparsity order of the wide spectrum of interest using a small number of samples, and the second step adjusts the total number of collected samples according to the estimated signal sparsity order. By doing so, the overall sampling cost can be minimized adaptively, without degrading the sensing performance.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 6 )