By Topic

On the design of scheduling algorithms for end-to-end backlog minimization in multi-hop wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shizhen Zhao ; Sch. of ECE, Purdue Univ., West Lafayette, IN, USA ; Xiaojun Lin

In this paper, we study the problem of link scheduling for multi-hop wireless networks with per-flow delay constraints. Specifically, we are interested in algorithms that maximize the asymptotic decay-rate of the probability with which the maximum end-to-end backlog among all flows exceeds a threshold, as the threshold becomes large. We provide both positive and negative results in this direction. By minimizing the drift of the maximum end-to-end backlog in the converge-cast on a tree, we design an algorithm, Largest-Weight-First(LWF), that achieves the optimal asymptotic decay-rate for the overflow probability of the maximum end-to-end backlog as the threshold becomes large. However, such a drift minimization algorithm may not exist for general networks. We provide an example in which no algorithm can minimize the drift of the maximum end-to-end backlog. Finally, we simulate the LWF algorithm together with a well known algorithm (the back-pressure algorithm) and a large-deviations optimal algorithm in terms of the sum-queue (the P-TREE algorithm) in converge-cast networks. Our simulation shows that our algorithm significantly performs better not only in terms of asymptotic decay-rate, but also in terms of the actual overflow probability.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012