By Topic

Vulnerability and protection for distributed consensus-based spectrum sensing in cognitive radio networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiben Yan ; Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Ming Li ; Jiang, T. ; Wenjing Lou
more authors

Cooperative spectrum sensing is key to the success of cognitive radio networks. Recently, fully distributed cooperative spectrum sensing has been proposed for its high performance benefits particularly in cognitive radio ad hoc networks. However, the cooperative and fully distributed natures of such protocol make it highly vulnerable to malicious attacks, and make the defense very difficult. In this paper, we analyze the vulnerabilities of distributed sensing architecture based on a representative distributed consensus-based spectrum sensing algorithm. We find that such distributed algorithm is particularly vulnerable to a novel form of attack called covert adaptive data injection attack. The vulnerabilities are even magnified under multiple colluding attackers. We further propose effective protection mechanisms, which include a robust distributed outlier detection scheme with adaptive local threshold to thwart the covert adaptive data injection attack, and a hash-based computation verification approach to cope with collusion attacks. Through simulation and analysis, we demonstrate the destructive power of the attacks, and validate the efficacy and efficiency of our proposed protection mechanisms.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012