By Topic

UFlood: High-throughput flooding over wireless mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subramanian, J. ; Comput. Sci. & Artificial Intell. Lab., MIT, Cambridge, MA, USA ; Morris, R. ; Balakrishnan, H.

This paper proposes UFlood, a flooding protocol for wireless mesh networks. UFlood targets situations such as software updates where all nodes need to receive the same large file of data, and where limited radio range requires forwarding. UFlood's goals are high throughput and low airtime, defined respectively as rate of completion of a flood to the slowest receiving node and total time spent transmitting. The key to achieving these goals is good choice of sender for each transmission opportunity. The best choice evolves as a flood proceeds in ways that are difficult to predict. UFlood's core new idea is a distributed heuristic to dynamically choose the senders likely to lead to all nodes receiving the flooded data in the least time. The mechanism takes into account which data nearby receivers already have as well as internode channel quality. The mechanism includes a novel bit-rate selection algorithm that trades off the speed of high bit-rates against the larger number of nodes likely to receive low bitrates. Unusually, UFlood uses both random network coding to increase the usefulness of each transmission and detailed feedback about what data each receiver already has; the feedback is critical in deciding which node's coded transmission will have the most benefit to receivers. The required feedback is potentially voluminous, but UFlood includes novel techniques to reduce its cost. The paper presents an evaluation on a 25-node 802.11 test-bed. UFlood achieves 150% higher throughput than MORE, a high-throughput flooding protocol, using 65% less airtime. UFlood uses 54% less airtime than MNP, an existing efficient protocol, and achieves 300% higher throughput.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012