By Topic

Optimal surface deployment problem in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Miao Jin ; Center for Adv. Comput. Studies, Univ. of Louisiana at Lafayette, Lafayette, LA, USA ; Guodong Rong ; Wu, H. ; Liang Shuai
more authors

Sensor deployment is a fundamental issue in a wireless sensor network, which often dictates the overall network performance. Previous studies on sensor deployment mainly focused on sensor networks on 2D plane or in 3D volume. In this paper, we tackle the problem of optimal sensor deployment on 3D surfaces, aiming to achieve the highest overall sensing quality. In general, the reading of a sensor node exhibits unreliability, which often depends on the distance between the sensor and the target to be sensed, as observed in a wide range of applications. Therefore, with a given set of sensors, a sensor network offers different accuracy in data acquisition when the sensors are deployed in different ways in the Field of Interest (FoI). We formulate this optimal surface deployment problem in terms of sensing quality by introducing a general function to measure the unreliability of monitored data in the entire sensor network. We present its optimal solution and propose a series of algorithms for practical implementation. Extensive simulations are conducted on various 3D mountain surface models to demonstrate the effectiveness of the proposed algorithms.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012