By Topic

Memory-efficient pattern matching architectures using perfect hashing on graphic processing units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cheng-Hung Lin ; National Taiwan Normal University, Taipei, Taiwan ; Chen-Hsiung Liu ; Shih-Chieh Chang ; Wing-Kai Hon

Memory architectures have been widely adopted in network intrusion detection system for inspecting malicious packets due to their flexibility and scalability. Memory architectures match input streams against thousands of attack patterns by traversing the corresponding state transition table stored in commodity memories. With the increasing number of attack patterns, reducing memory requirement has become critical for memory architectures. In this paper, we propose a novel memory architecture using perfect hashing to condense state transition tables without hash collisions. The proposed memory architecture achieves up to 99.5% improvement in memory reduction compared to the traditional two-dimensional memory architecture. We have implemented our memory architectures on graphic processing units and tested using attack patterns from Snort V2.8 and input packets form DEFCON. The experimental results show that the proposed memory architectures outperform state-of-the-art memory architectures both on performance and memory efficiency.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012