By Topic

CSI-SF: Estimating wireless channel state using CSI sampling & fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Crepaldi, R. ; Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Jeongkeun Lee ; Etkin, R. ; Sung-Ju Lee
more authors

One of the key features of high speed WLAN such as 802.11n is the use of MIMO (Multiple Input Multiple Output) antenna technology. The MIMO channel is described with fine granularity by Channel State Information (CSI) that can be utilized in many ways to improve network performance. Many complex parameters of a MIMO system require numerous samples to obtain CSI for all possible channel configurations. As a result, measuring the complete CSI space requires excessive sampling overhead and thus degrades network performance. We propose CSI-SF (CSI Sampling & Fusion), a method for estimating CSI for every MIMO configuration by sampling a small number of frames transmitted with different settings and extrapolating data for the remaining settings. For instance, we predict CSI of multi-stream settings using CSI obtained only from single stream packets. We evaluate the effectiveness of CSI-SF in various scenarios using our 802.11n testbed and show that CSI-SF provides an accurate, complete knowledge of the MIMO channel with reduced overhead from traditional sampling. We also show that CSI-SF can be applied to network algorithms such as rate adaptation, antenna selection and association control to significantly improve their performance and efficiency.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012