By Topic

Social feature-based multi-path routing in delay tolerant networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jie Wu ; Dept. of Comput. & Inf. Sci., Temple Univ., Philadelphia, PA, USA ; Yunsheng Wang

Most routing protocols for delay tolerant networks resort to the sufficient state information, including trajectory and contact information, to ensure routing efficiency. However, state information tends to be dynamic and hard to obtain without a global and/or long-term collection process. In this paper, we use the internal social features of each node in the network to perform the routing process. This approach is motivated from several social contact networks, such as the Infocom 2006 trace, where people contact each other more frequently if they have more social features in common. Our approach includes two unique processes: social feature extraction and multi-path routing. In social feature extraction, we use entropy to extract the m most informative social features to create a feature space (F-space): (F1, F2, ..., Fm), where Fi corresponds to a feature. The routing method then becomes a hypercube-based feature matching process where the routing process is a step-by-step feature difference resolving process. We offer two special multi-path routing schemes: node-disjoint-based routing and delegation-based routing. Extensive simulations on both real and synthetic traces are conducted in comparison with several existing approaches, including spray-and-wait routing and spray-and-focus routing.

Published in:

INFOCOM, 2012 Proceedings IEEE

Date of Conference:

25-30 March 2012