By Topic

An Efficient Framework for Searching Text in Noisy Document Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yalniz, I.Z. ; Dept. of Comput. Sci., Univ. of Massachusetts, Amherst, MA, USA ; Manmatha, R.

An efficient word spotting framework is proposed to search text in scanned books. The proposed method allows one to search for words when optical character recognition (OCR) fails due to noise or for languages where there is no OCR. Given a query word image, the aim is to retrieve matching words in the book sorted by the similarity. In the offline stage, SIFT descriptors are extracted over the corner points of each word image. Those features are quantized into visual terms (visterms) using hierarchical K-Means algorithm and indexed using an inverted file. In the query resolution stage, the candidate matches are efficiently identified using the inverted index. These word images are then forwarded to the next stage where the configuration of visterms on the image plane are tested. Configuration matching is efficiently performed by projecting the visterms on the horizontal axis and searching for the Longest Common Subsequence (LCS) between the sequences of visterms. The proposed framework is tested on one English and two Telugu books. It is shown that the proposed method resolves a typical user query under 10 milliseconds providing very high retrieval accuracy (Mean Average Precision 0.93). The search accuracy for the English book is comparable to searching text in the high accuracy output of a commercial OCR engine.

Published in:

Document Analysis Systems (DAS), 2012 10th IAPR International Workshop on

Date of Conference:

27-29 March 2012