By Topic

High-Performance Polymer Light-Emitting Diodes Based on a Gallium-Doped Zinc Oxide/Polyimide Substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sy-Hann Chen ; Dept. of Electrophys., Nat. Chiayi Univ., Chiayi, Taiwan ; Yu-Chyuan Chen

Conducting atomic force microscopy and scanning surface potential microscopy were used to study the surface electrical properties of gallium-doped zinc oxide (GZO) films on the nanoscale. GZO films on a polyimide (PI) substrate were prepared by pulsed laser deposition at various substrate temperatures. Our experimental results show a correlation between the local conductivity and work function (WF) and the gallium dopant concentration and the number of oxygen vacancies on the GZO surface. When the substrate temperature was approximately 150 °C, the root-mean-square roughness, the percent surface area of the conducting regions, and the mean WF on the GZO surface were 2.17 nm, 88.91%, and 4.74 eV, respectively. When the GZO/PI substrate was used as an anode material in a polymer light-emitting diode (PLED), the electroluminescence intensity was increased by nearly onefold compared with the standard PLED, which is based on a commercial-indium tin oxide/glass substrate.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 6 )