By Topic

A Novel Space Partitioning Algorithm to Improve Current Practices in Facility Placement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jimenez, T. ; Center of Comput. Epidemiology & Response Anal., Univ. of North Texas, Denton, TX, USA ; Mikler, A.R. ; Tiwari, C.

In the presence of naturally occurring and man-made public health threats, the feasibility of regional bio-emergency contingency plans plays a crucial role in the mitigation of such emergencies. While the analysis of in-place response scenarios provides a measure of quality for a given plan, it involves human judgment to identify improvements in plans that are otherwise likely to fail. Since resource constraints and government mandates limit the availability of service provided in case of an emergency, computational techniques can determine optimal locations for providing emergency response assuming that the uniform distribution of demand across homogeneous resources will yield an optimal service outcome. This paper presents an algorithm that recursively partitions the geographic space into subregions while equally distributing the population across the partitions. For this method, we have proven the existence of an upper bound on the deviation from the optimal population size for subregions.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:42 ,  Issue: 5 )