Cart (Loading....) | Create Account
Close category search window

Carbon Nanotube SRAM Design With Metallic CNT or Removed Metallic CNT Tolerant Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhe Zhang ; Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA ; Delgado-Frias, J.G.

A study of an eight-transistor static random access memory (SRAM) cell and its implementation in carbon nanotube FET (CNTFET) technology are presented. Simulations of the CNTFET SRAM cell design, using a CNT SPICE model, have shown advantages over the CMOS cell in terms of static power, dynamic power, and noise margin. However, current CNT synthesis processes grow metallic CNTs alongside semiconductor CNTs. This in turn greatly degrades the performance and functionality of SRAM cells. In this paper, we present and compare two approaches to overcome the presence of metallic CNTs. The first approach tolerates metallic CNTs and uses a series of uncorrelated CNTs to form a transistor; this provides tolerance to metallic CNTs. The second approach uses an M × N array of uncorrelated CNTs to form a CNTFET and requires technologies capable of removing metallic CNTs. Both approaches have similar static noise margin. The second approach (removed metallic CNTs) consumes 1.45× more static power; on the other hand, its CNT count and write delay are reduced to 35.6% and 10.9% of the metallic tolerant approach, respectively. The realization of large memory modules in the presence of faulty SRAM cells can be achieved by having memory modules with as few as two spare columns.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.