By Topic

Object Co-Segmentation Based on Shortest Path Algorithm and Saliency Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fanman Meng ; Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Hongliang Li ; Guanghui Liu ; King Ngi Ngan

Segmenting common objects that have variations in color, texture and shape is a challenging problem. In this paper, we propose a new model that efficiently segments common objects from multiple images. We first segment each original image into a number of local regions. Then, we construct a digraph based on local region similarities and saliency maps. Finally, we formulate the co-segmentation problem as the shortest path problem, and we use the dynamic programming method to solve the problem. The experimental results demonstrate that the proposed model can efficiently segment the common objects from a group of images with generally lower error rate than many existing and conventional co-segmentation methods.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 5 )