By Topic

Quasi-Maximum Efficiency Point Tracking for Direct Methanol Fuel Cell in DMFC/Supercapacitor Hybrid Energy System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo-Rong Zhu ; Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong ; K. H. Loo ; Y. M. Lai ; Chi K. Tse

Direct methanol fuel cells (DMFC) have been widely researched for applications in portable electronics due to their use of liquid fuel for easy storage and transportation compared to gaseous hydrogen. However, DMFC's performance is strongly affected by methanol crossover that significantly degrades the energy efficiency at low output power, and is characterized by an increasing efficiency at increasing output power. The maximum efficiency point (MEP) is inherently difficult to track due to the commonly unknown methanol crossover rate, but since it is experimentally found to be located very close to the maximum power point (MPP), it is suggested that the MPP can be practically viewed as the quasi-MEP and an alternative tracking approach based on the MPP is proposed for the purpose of MEP tracking. In this paper, a fuel-cell-oriented MPP tracking algorithm based on resistance matching is developed, implemented, and tested in the context of a DMFC/supercapacitor hybrid energy system. To account for the generally slow fuel cell dynamics, the DMFC is constantly tracked at the MPP, while any surplus or deficit power is absorbed or delivered by the supercapacitor bank. The detailed formulation of the algorithm and the power flow design and realization are also discussed.

Published in:

IEEE Transactions on Energy Conversion  (Volume:27 ,  Issue: 3 )