By Topic

Photonic Incremental Pressure Sensor Based on Optical Feedback in a Polymer Embedded VCSEL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Van Hoe, B. ; Centre for Microsyst. Technol. (CMST), Ghent Univ., Ghent, Belgium ; Bosman, E. ; Missinne, J. ; Kalathimekkad, S.
more authors

A highly accurate integrated incremental pressure sensor is presented based on optical feedback in a vertical-cavity surface-emitting laser (VCSEL). This laser chip is embedded in a polymer host material and an external cavity, consisting of a compressible transducer material and a reflecting layer, is fabricated on top. The reflecting layer is coupling part of the emitted laser light back into the internal VCSEL cavity causing self-mixing interferometry. By applying pressure and consequently changing the external cavity length, this interference signal adopts a periodic shape corresponding to half the VCSEL wavelength. The use of unpackaged VCSELs limits the sensor dimensions and minimizes the distance between two adjacent sensing points. A proof-of-principle setup is developed and the integrated sensing principle has been demonstrated using a polydimethylsiloxane transducer layer. A 850-nm VCSEL is used and forces up to 300 mN are applied resulting in a 2-mV peak-to-peak variation of the electrical driving voltage.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 13 )