Cart (Loading....) | Create Account
Close category search window
 

A Neural Network Approach to Improve the Vertical Resolution of Atmospheric Temperature Profiles From Geostationary Satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sharma, N. ; Atmos. & Oceanogr. Group, Nat. Remote Sensing Center, Hyderabad, India ; Ali, M.M.

Tropospheric temperature measurements at high temporal, spatial, and vertical resolutions are required for many meteorological studies. Radiosonde and Global Positioning System radio occultation (GPSRO) observations have very high vertical resolutions but poor in spatial and temporal coverage. Although the sounders on geostationary satellites can provide high temporal and spatial resolutions, their vertical resolution is poor. In this letter, we proposed a method to increase the vertical resolution of tropospheric temperature profiles obtained from geostationary satellite observations based on an artificial neural network (ANN) approach so that high-resolution temperature profiles are available in all four dimensions. We simulated the pressure levels of the forthcoming Indian National Satellite System (INSAT) 3-D temperature measurements from 950 to 100 hPa using 1-D variational temperature profiles of the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC). We used these low-resolution simulated profiles as the predictors and the high-resolution GPSRO COSMIC profiles as predictants. The data during 2007 and 2008 were used to develop the model, and the data during 2009 were used for validation. The correlation coefficient of greater than 0.94 is observed throughout the pressure levels for all the three data sets. The root-mean-square differences of training, selection, and validation sets are 0.43, 0.46, and 0.51, respectively. A scatter index of less than 0.002 for all the three data sets indicates the accuracy of the estimations.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.