By Topic

Multicast Routing for Decentralized Control of Cyber Physical Systems with an Application in Smart Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Husheng Li ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Lifeng Lai ; Poor, H.V.

In cyber physical systems, communication is needed for conveying sensor observations to controllers; thus, the design of the communication sub-system is of key importance for the stabilization of system dynamics. In this paper, multicast routing is studied for networking of decentralized sensors and controllers. The challenges of uncertain destinations and multiple routing modes, which are significantly different from traditional data networks, are addressed by employing the theories of hybrid systems and linear matrix inequalities, thus forming a novel framework for studying the communication sub-system in cyber physical systems. Both cases of neglible delay and non-negligible delay are discussed. The proposed framework is then applied in the context of voltage control in smart grid. Numerical simulations using a 4-bus power grid model show that the proposed framework and algorithm can effectively stabilize cyber physical systems.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 6 )