By Topic

Quantitative Characterization of Semantic Gaps for Learning Complexity Estimation and Inference Model Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jianping Fan ; Sch. of Inf. Sci. & Technol., Northwest Univ., Xi'an, China ; Xiaofei He ; Ning Zhou ; Jinye Peng
more authors

In this paper, a novel data-driven algorithm is developed for achieving quantitative characterization of the semantic gaps directly in the visual feature space, where the visual feature space is the common space for concept classifier training and automatic concept detection. By supporting quantitative characterization of the semantic gaps, more effective inference models can automatically be selected for concept classifier training by: (1) identifying the image concepts with small semantic gaps (i.e., the isolated image concepts with high inner-concept visual consistency) and training their one-against-all SVM concept classifiers independently; (2) determining the image concepts with large semantic gaps (i.e., the visually-related image concepts with low inner-concept visual consistency) and training their inter-related SVM concept classifiers jointly; and (3) using more image instances to achieve more reliable training of the concept classifiers for the image concepts with large semantic gaps. Our experimental results on NUS-WIDE and ImageNet image sets have obtained very promising results.

Published in:

IEEE Transactions on Multimedia  (Volume:14 ,  Issue: 5 )