Cart (Loading....) | Create Account
Close category search window
 

A Modified Optimal Interpolation Technique for Vector Retrieval for Coherent Doppler LIDAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Choukulkar, A. ; Environ. Remote Sensing Group, Arizona State Univ., Tempe, AZ, USA ; Calhoun, R. ; Billings, B. ; Doyle, J.D.

Several modifications to the optimal interpolation (OI) technique for light-detection-and-ranging vector retrieval are proposed and shown to result in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. A validation of the modified OI technique is presented, comparing the retrievals with the original technique in each case. The modified technique is able to perform retrievals with better accuracy, preserves local information better, and compares well with tower measurements.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 6 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.