By Topic

Nanometer-scale system design challenges: Bridging the gap from devices to architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yusuf Leblebici ; Microelectronic System Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland

Next generation logic switching devices are expected to rely on radically new technologies mainly due to the increasing difficulties and limitations of state-of-the-art CMOS switches, which, in turn, will also require innovative circuit and system architectures, and design methodologies that are distinctly different from those used for CMOS technologies. In this paper, we discuss a few specific examples of logic design platforms that exploit the structural regularity that is predicted to dominate SiNW based systems, as well as the ambipolarity of devices that can be utilized to achieve higher logic versatility for the same number of components.

Published in:

2012 13th International Conference on Ultimate Integration on Silicon (ULIS)

Date of Conference:

6-7 March 2012