By Topic

Strain engineering in suspended graphene devices for pressure sensor applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. D. Smith ; KTH Royal Institute of Technology, Integrated Devices and Circuits, Stockholm, Sweden ; S. Vaziri ; A. Delin ; M. Ostling
more authors

The present paper describes a device structure for controlling and measuring strain in graphene membranes. We propose to induce strain by creating a pressure difference between the inside and the outside of a cavity covered with a graphene membrane. The combination of tight-binding calculations and a COMSOL model predicts strain induced band gaps in graphene for certain conditions and provides a guideline for potential device layouts. Raman spectroscopy on fabricated devices indicates the feasibility of this approach. Ultimately, pressure-induced band structure changes could be detected electrically, suggesting an application as ultra-sensitive pressure sensors.

Published in:

2012 13th International Conference on Ultimate Integration on Silicon (ULIS)

Date of Conference:

6-7 March 2012