By Topic

Graphene-based embedded-oxide-trap memory (gEOTM) for flexible electronics application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sung Min Kim ; Department of Electrical Engineering, University of California, 420 Westwood Plaza, Los Angeles, CA 90095 USA ; Sejoon Lee ; Emil B. Song ; Sunae Seo
more authors

A The non-volatile gEOTMs are fabricated using a single-layer graphene (SLG) channel with an Al2O3 gate oxide layer, in which an ion-bombarded AlOx layer is intentionally formed by oxygen ion bombardment (OIB) to create the charge trap sites. The whole processes are carried out at temperature below 120°C to exploit gEOTM's compatibility to the flexible substrates. The devices shows a large memory window (>; 11.0 V), attributing to the effective electron-injection into the trap sites in AlOx. The results suggest that the gEOTM has potential applications for the high-density-memory devices and modules in flexible electronics.

Published in:

2012 13th International Conference on Ultimate Integration on Silicon (ULIS)

Date of Conference:

6-7 March 2012