By Topic

Quantum Plasmonic Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nathalie P. de Leon ; Departments of Physics and Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA ; Mikhail D. Lukin ; Hongkun Park

Interactions between light and matter can be dramatically modified by concentrating light into a small volume for a long period of time. Gaining control over such interaction is critical for realizing many schemes for classical and quantum information processing, including optical and quantum computing, quantum cryptography, and metrology and sensing. Plasmonic structures are capable of confining light to nanometer scales far below the diffraction limit, thereby providing a promising route for strong coupling between light and matter, as well as miniaturization of photonic circuits. At the same time, however, the performance of plasmonic circuits is limited by losses and poor collection efficiency, presenting unique challenges that need to be overcome for quantum plasmonic circuits to become a reality. In this paper, we survey recent progress in controlling emission from quantum emitters using plasmonic structures, as well as efforts to engineer surface plasmon propagation and design plasmonic circuits using these elements.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:18 ,  Issue: 6 )