Cart (Loading....) | Create Account
Close category search window
 

Tree-Structured CRF Models for Interactive Image Labeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mensink, T. ; LEAR Team, INRIA Rhone-Alpes, Montbonnot, France ; Verbeek, J. ; Csurka, G.

We propose structured prediction models for image labeling that explicitly take into account dependencies among image labels. In our tree-structured models, image labels are nodes, and edges encode dependency relations. To allow for more complex dependencies, we combine labels in a single node and use mixtures of trees. Our models are more expressive than independent predictors, and lead to more accurate label predictions. The gain becomes more significant in an interactive scenario where a user provides the value of some of the image labels at test time. Such an interactive scenario offers an interesting tradeoff between label accuracy and manual labeling effort. The structured models are used to decide which labels should be set by the user, and transfer the user input to more accurate predictions on other image labels. We also apply our models to attribute-based image classification, where attribute predictions of a test image are mapped to class probabilities by means of a given attribute-class mapping. Experimental results on three publicly available benchmark datasets show that in all scenarios our structured models lead to more accurate predictions, and leverage user input much more effectively than state-of-the-art independent models.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.