Cart (Loading....) | Create Account
Close category search window

The Phosphorylation of the Heat Shock Factor as a Modulator for the Heat Shock Response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Czeizler, E. ; Dept. of Inf. & Comput. Sci., Aalto Univ., Aalto, Finland ; Rogojin, V. ; Petre, I.

The heat shock response is a well-conserved defence mechanism against the accumulation of misfolded proteins due to prolonged elevated heat. The cell responds to heat shock by raising the levels of heat shock proteins (hsp), which are responsible for chaperoning protein refolding. The synthesis of hsp is highly regulated at the transcription level by specific heat shock (transcription) factors (hsf). One of the regulation mechanisms is the phosphorylation of hsf's. Experimental evidence shows a connection between the hyper-phosphorylation of hsfs and the transactivation of the hsp-encoding genes. In this paper, we incorporate several (de)phosphorylation pathways into an existing well-validated computational model of the heat shock response. We analyze the quantitative control of each of these pathways over the entire process. For each of these pathways we create detailed computational models which we subject to parameter estimation in order to fit them to existing experimental data. In particular, we find conclusive evidence supporting only one of the analyzed pathways. Also, we corroborate our results with a set of computational models of a more reduced size.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.