Cart (Loading....) | Create Account
Close category search window
 

On the Design of Efficient Multi-Coil Telemetry System for Biomedical Implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramrakhyani, A.K. ; Dept. of Electr. & Comput. Eng., Univ. of Utah, Salt Lake City, UT, USA ; Lazzi, G.

Two-coil based inductive coupling is a commonly used technique for wireless power and data transfer for biomedical implants. Because the source and load resistances are finite, two-coil systems generally achieve a relatively low power transfer efficiency. A novel multi-coil technique (using more than two coils) for wireless power and data transfer is considered to help overcoming this limitation. The proposed multi-coil system is formulated using both network theory and a two-port model. Using three or four coils for the wireless link allows for the source and load resistances to be decoupled from the Q-factor of the coils, resulting in a higher Q -factor and a corresponding improved power transfer efficiency (PTE). Moreover, due to the strong coupling between the driver and the transmitter coil (and/or between the receiver and the load coil), the multi-coil system achieves higher tunable frequency bandwidth as compared to its same sized two-coil equivalent. Because of the wider range of reflected impedance in the multi-coil system case, it is easier to tune the output power to the load and achieve the maximum power transfer condition for given source voltage than in a configuration with two coils. Experimental results showing a three-coil system achieving twice the efficiency and higher gain-bandwidth product compared to its two-coil counterpart are presented. In addition, a figure of merit for telemetry systems is defined to quantify the overall telemetry system performance.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.