By Topic

Channel Assignment With Access Contention Resolution for Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le Thanh Tan ; Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS-EMT), Université du Québec, Montréal, Canada ; Long Bao Le

In this paper, we consider the channel assignment problem for cognitive radio networks with hardware-constrained secondary users (SUs). In particular, we assume that SUs exploit spectrum holes on a set of channels where each SU can use at most one available channel for communication. We present the optimal brute-force search algorithm to solve the corresponding nonlinear integer optimization problem and analyze its complexity. Because the optimal solution has exponential complexity with the numbers of channels and SUs, we develop two low-complexity channel assignment algorithms that can efficiently utilize the spectrum holes. In the first algorithm, SUs are assigned distinct sets of channels. We show that this algorithm achieves the maximum throughput limit if the number of channels is sufficiently large. In addition, we propose an overlapping channel assignment algorithm that can improve the throughput performance compared with its nonoverlapping channel assignment counterpart. Moreover, we design a distributed medium access control (MAC) protocol for access contention resolution and integrate it into the overlapping channel assignment algorithm. We then analyze the saturation throughput and the complexity of the proposed channel assignment algorithms. We also present several potential extensions, including the development of greedy channel assignment algorithms under the max-min fairness criterion and throughput analysis, considering sensing errors. Finally, numerical results are presented to validate the developed theoretical results and illustrate the performance gains due to the proposed channel assignment algorithms.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:61 ,  Issue: 6 )