By Topic

Remaining Useful Life Estimation of Critical Components With Application to Bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Medjaher, K. ; AS2M Dept., UTBM, Besançcon, France ; Tobon-Mejia, D.A. ; Zerhouni, N.

Prognostics activity deals with the estimation of the Remaining Useful Life (RUL) of physical systems based on their current health state and their future operating conditions. RUL estimation can be done by using two main approaches, namely model-based and data-driven approaches. The first approach is based on the utilization of physics of failure models of the degradation, while the second approach is based on the transformation of the data provided by the sensors into models that represent the behavior of the degradation. This paper deals with a data-driven prognostics method, where the RUL of the physical system is assessed depending on its critical component. Once the critical component is identified, and the appropriate sensors installed, the data provided by these sensors are exploited to model the degradation's behavior. For this purpose, Mixture of Gaussians Hidden Markov Models (MoG-HMMs), represented by Dynamic Bayesian Networks (DBNs), are used as a modeling tool. MoG-HMMs allow us to represent the evolution of the component's health condition by hidden states by using temporal or frequency features extracted from the raw signals provided by the sensors. The prognostics process is then done in two phases: a learning phase to generate the behavior model, and an exploitation phase to estimate the current health state and calculate the RUL. Furthermore, the performance of the proposed method is verified by implementing prognostics performance metrics, such as accuracy, precision, and prediction horizon. Finally, the proposed method is applied to real data corresponding to the accelerated life of bearings, and experimental results are discussed.

Published in:

Reliability, IEEE Transactions on  (Volume:61 ,  Issue: 2 )