By Topic

A Plant Growth-Based Optimization Approach Applied to Capacitor Placement in Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shyh-Jier Huang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Xian-Zong Liu

This paper proposes a plant growth-based optimization approach for capacitor placement in power systems. The method characterizes the growth mechanism of a plant phototropism, where a larger morphactin concentration of a node indicates a higher probability of new branch growth. The growth of a plant phototropism is mimicked in a function optimization process that is useful for capacitor placement. Through this capacitor allocation, the line loss and carbon dioxide emissions of the grid can be both reduced. The proposed method is validated using example grids and a part of the Taipower Company system. Test results confirm the feasibility of the method.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 4 )