By Topic

Misaligned Principal Components Analysis: Application to gene expression time series analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Arnau Tibau-Puig ; University of Michigan - Department of Electrical Engineering, 1301 Beal Avenue, Ann Arbor, 48109-2122 USA ; Ami Wiesel ; Raj Rao Nadakuditi ; Alfred O. Hero

Principal Component Analysis (PCA) is a widely applied method for extracting structure from samples of high dimensional biological data. Often there exist misalignments between different samples and this can cause severe problems in PCA if not properly taken into account. For example, subject-dependent temporal differences in gene expression response to a treatment will create relative time shifts in the samples that decohere the PCA analysis. Depending on the characteristics of the underlying signal, the sensitivity of PCA to such misalignments is severe, leading to a phase transition phenomenon that can be studied using the spectral theory of autocorrelation matrices. With this as motivation, we propose a new method of PCA, called MisPCA, that explicitly accounts for the effects of misalignments in the samples. We illustrate MisPCA on clustering longitudinal temporal gene expression data.

Published in:

2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)

Date of Conference:

6-9 Nov. 2011