System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Energy Sensing Strategy Optimization for Opportunistic Spectrum Access

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ercan, A.O. ; Dept. of Electr. & Electron. Eng., Ozyegin Univ., Istanbul, Turkey ; Sunay, M.O.

This paper introduces a correlator-based energy sensing strategy for opportunistic spectrum access in a slow, flat-fading channel. The correlator provides weighted energy accumulation in time. We assume that the noise variance is known and the primary user (PU) traffic follows a two state Markov chain with known idle and busy rates. Using Chebyshev bounds on missed detection and false alarm probabilities, we find that the optimal weighting function is an increasing function of time and its shape is dependent on the PU traffic characteristics and SNR. We show that the traditional flat-integration based energy collection method is suboptimal both in the error probability and channel utilization sense.

Published in:

Communications Letters, IEEE  (Volume:16 ,  Issue: 6 )