Cart (Loading....) | Create Account
Close category search window
 

Experimental Validation of Frozen Modes Guided on Printed Coupled Transmission Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Apaydin, N. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Lanlin Zhang ; Sertel, K. ; Volakis, J.L.

Previous work has theoretically demonstrated that nonreciprocal slow-wave modes, namely, “frozen modes,” can be supported on a pair of coupled transmission lines printed on a magnetic substrate. Small antennas have also been designed by exploiting these modes. However, to date, we have yet to demonstrate and observe their existence experimentally. To this end, we construct two printed prototypes comprised of several unit-cells and employ the “T-matrix method” to determine the dispersion properties by measuring the S-parameters of these finite periodic prototypes. The printed unit-cell is designed to exhibit a unique stationary inflection point in the dispersion diagram corresponding to a frozen mode with almost zero group velocity. Through careful measurements and calculations, the frozen mode is observed to propagate at a significantly slower speed (286 times slower) than the speed of light. Importantly, this extraction method can be applied to any other periodic layout to obtain related dispersion properties.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.