Cart (Loading....) | Create Account
Close category search window
 

Quantifying Information Transfer Through a Head-Attached Vibrotactile Display: Principles for Design and Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dobrzynski, M.K. ; Lab. of Intell. Syst., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Mejri, S. ; Wischmann, S. ; Floreano, D.

Vibrotactile displays can extend the perception capabilities of visually impaired persons. Placing such devices on the head promises easy attachment and detachment without reducing other interaction abilities. However, the effectiveness of head-attached vibrotactile displays has never been thoroughly tested. This paper presents the results obtained from experiments with 22 subjects equipped with a display containing 12 coin-type motors equally spaced in a horizontal plane around the upper head region. Our display allowed single- as well as multimotor activation with up to six simultaneously active motors. We identified the minimum and comfort strength of vibrotactile stimulation, and measured the precision in perceiving the accurate number of active motors as well as the precision in localizing the stimuli on the head. While subjects identified the correct number of active motors in 94% of the cases when presented with only one active motor, this precision dropped to 40% for two and down to 5% for five simultaneously active motors. This strongly suggests to avoid multipoint stimulation even though the precision of localizing a position of a stimulus on the head is barely affected by the number of simultaneously active motors. Localization precision, however, varied significantly with the region of the head suggesting that the most front and back regions of the head should be avoided if high precision is required.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.