By Topic

Precise Segmentation of 3-D Magnetic Resonance Angiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
El-Baz, A. ; Bioeng. Dept., Univ. of Louisville, Louisville, KY, USA ; Elnakib, A. ; Khalifa, F. ; El-Ghar, M.A.
more authors

Accurate automatic extraction of a 3-D cerebrovascular system from images obtained by time-of-flight (TOF) or phase contrast (PC) magnetic resonance angiography (MRA) is a challenging segmentation problem due to the small size objects of interest (blood vessels) in each 2-D MRA slice and complex surrounding anatomical structures (e.g., fat, bones, or gray and white brain matter). We show that due to the multimodal nature of MRA data, blood vessels can be accurately separated from the background in each slice using a voxel-wise classification based on precisely identified probability models of voxel intensities. To identify the models, an empirical marginal probability distribution of intensities is closely approximated with a linear combination of discrete Gaussians (LCDG) with alternate signs, using our previous EM-based techniques for precise linear combination of Gaussian-approximation adapted to deal with the LCDGs. The high accuracy of the proposed approach is experimentally validated on 85 real MRA datasets (50 TOF and 35 PC) as well as on synthetic MRA data for special 3-D geometrical phantoms of known shapes.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 7 )