Cart (Loading....) | Create Account
Close category search window

Cube-scan-based three dimensional localization for large-scale Underwater Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongji Ren ; Sch. of Instrum. Sci. & Opto-Electron. Eng., Beijing Univ. of Aeronaut. & Astronaut., Beijing, China ; Ning Yu ; Xiaolei Guo ; Jiangwen Wan

As a distributed underwater network with wireless sensors, Underwater Wireless Sensor Networks (UWSNs) can provide the means for real-time, accurate and extensive monitoring, it is considered as an ideal system for extensive aqueous environment surveillance. Although localization has been widely studied for terrestrial WSNs, the adverse aqueous environments and harsh acoustic communications all bring new challenges for UWSNs and make it necessary to develop new localization schemes. In this paper, we propose a novel cube-scan-based three dimensional (3D) multi-hop localization algorithm for large-scale UWSNs. Firstly, based on the geometric constraint relationship and the depth information of sensor nodes, we effectively restrict the scope of the to-be-localized node position by a feasible set. Then we study the factors that influence the multi-hop distance estimation, a weighted constrained multi-hop localization model has been constructed. Finally, the feasible set is divided into some sub-cubes of equal size, the approximately optimal values of nodes' coordinates can be obtained through a cube-scanning procedure. Simulation results show that our scheme can achieve high localization accuracy with low communication overhead in large-scale UWSNs.

Published in:

Systems Conference (SysCon), 2012 IEEE International

Date of Conference:

19-22 March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.