By Topic

Gravure Printing of ITO Transparent Electrodes for Applications in Flexible Electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Alsaid, D.A. ; Western Michigan Univ., Kalamazoo, MI, USA ; Rebrosova, E. ; Joyce, M. ; Rebros, M.
more authors

The possibility to directly pattern indium-tin-oxide (ITO) layers at ambient conditions by printing has many benefits. Printing, being an additive process, would greatly reduce the amount of energy, labor and material used by the current manufacturing processes to deposit and pattern ITO. In this work, gravure printability of ITO nanoparticles on polyethylene terephthalate (PET) was studied. A wide range of sheet resistivites and film thicknesses was obtained by varying the specifications of the gravure cells. From the regression analysis of the results, a good estimation of sheet resistivity of the printed films at different gravure cell volumes and aspect ratios (AR) was achieved. The films also showed transparency above 95% in the visible light region. In addition, printed ITO films were assessed for mechanical flexibility and the results compared to commercially available sputtered ITO films on PET. The electrical performance of printed ITO layers was not deteriorated with bending in contrast to the sputtered films. Therefore, printed ITO films can be of great benefit for applications in flexible electronics such as organic photovoltaics (OPV), liquid crystal displays (LCD), organic light-emitting diodes (OLED), touch screens, biosensors and utilization in the field of energy efficiency, especially in buildings.

Published in:

Display Technology, Journal of  (Volume:8 ,  Issue: 7 )