By Topic

More Hybrid and Secure Protection of Statistical Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Javier Herranz ; Universitat Politècnica de Catalunya, Barcelona ; Jordi Nin ; Marc Solé

Different methods and paradigms to protect data sets containing sensitive statistical information have been proposed and studied. The idea is to publish a perturbed version of the data set that does not leak confidential information, but that still allows users to obtain meaningful statistical values about the original data. The two main paradigms for data set protection are the classical one and the synthetic one. Recently, the possibility of combining the two paradigms, leading to a hybrid paradigm, has been considered. In this work, we first analyze the security of some synthetic and (partially) hybrid methods that have been proposed in the last years, and we conclude that they suffer from a high interval disclosure risk. We then propose the first fully hybrid SDC methods; unfortunately, they also suffer from a quite high interval disclosure risk. To mitigate this, we propose a postprocessing technique that can be applied to any data set protected with a synthetic method, with the goal of reducing its interval disclosure risk. We describe through the paper a set of experiments performed on reference data sets that support our claims.

Published in:

IEEE Transactions on Dependable and Secure Computing  (Volume:9 ,  Issue: 5 )