Cart (Loading....) | Create Account
Close category search window
 

Biologically Inspired Object Tracking Using Center-Surround Saliency Mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahadevan, V. ; Yahoo! Labs., Bangalore, India ; Vasconcelos, N.

A biologically inspired discriminant object tracker is proposed. It is argued that discriminant tracking is a consequence of top-down tuning of the saliency mechanisms that guide the deployment of visual attention. The principle of discriminant saliency is then used to derive a tracker that implements a combination of center-surround saliency, a spatial spotlight of attention, and feature-based attention. In this framework, the tracking problem is formulated as one of continuous target-background classification, implemented in two stages. The first, or learning stage, combines a focus of attention (FoA) mechanism, and bottom-up saliency to identify a maximally discriminant set of features for target detection. The second, or detection stage, uses a feature-based attention mechanism and a target-tuned top-down discriminant saliency detector to detect the target. Overall, the tracker iterates between learning discriminant features from the target location in a video frame and detecting the location of the target in the next. The statistics of natural images are exploited to derive an implementation which is conceptually simple and computationally efficient. The saliency formulation is also shown to establish a unified framework for classifier design, target detection, automatic tracker initialization, and scale adaptation. Experimental results show that the proposed discriminant saliency tracker outperforms a number of state-of-the-art trackers in the literature.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.