By Topic

Context Tree Switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joel Veness ; Univ. of Alberta, Edmonton, AB, Canada ; Kee Siong Ng ; Marcus Hutter ; Michael Bowling

This paper describes the Context Tree Switching technique, a modification of Context Tree Weighting for the prediction of binary, stationary, n-Markov sources. By modifying Context Tree Weighting's recursive weighting scheme, it is possible to mix over a strictly larger class of models without increasing the asymptotic time or space complexity of the original algorithm. We prove that this generalization preserves the desirable theoretical properties of Context Tree Weighting on stationary n-Markov sources, and show empirically that this new technique leads to consistent improvements over Context Tree Weighting as measured on the Calgary Corpus.

Published in:

2012 Data Compression Conference

Date of Conference:

10-12 April 2012