Cart (Loading....) | Create Account
Close category search window
 

A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asl, B.M. ; Dept. of Biomed. Eng., Tarbiat Modares Univ., Tehran, Iran ; Mahloojifar, A.

In recent years, adaptive beamforming methods have been successfully applied to medical ultrasound imaging, resulting in simultaneous improvement in imaging resolution and contrast. These improvements have been achieved at the expense of higher computational complexity, with respect to the conventional non-adaptive delay-and-sum (DAS) beamformer, in which computational complexity is proportional to the number of elements, O(M). The computational overhead results from the covariance matrix inversion needed for computation of the adaptive weights, the complexity of which is cubic with the subarray size, O(L3). This is a computationally intensive procedure, which makes the implementation of adaptive beamformers less attractive in spite of their advantages. Considering that, in medical ultrasound applications, most of the energy is scattered from angles close to the steering angle, assuming spatial stationarity is a good approximation, allowing us to assume the Toeplitz structure for the estimated covariance matrix. Based on this idea, in this paper, we have applied the Toeplitz structure to the spatially smoothed covariance matrix by averaging the entries along all subdiagonals. Because the inverse of the resulting Toeplitz covariance matrix can be computed in O(L2) operations, this technique results in a greatly reduced computational complexity. By using simulated and experimental RF data-point targets as well as cyst phantoms-we show that the proposed low-complexity adaptive beamformer significantly outperforms the DAS and its performance is comparable to that of the minimum variance beamformer, with reduced computational complexity.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.