By Topic

Low Complexity Transmitter Architectures for SFBC MIMO-OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Peng Li ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Sen-Hung Wang ; Kuei-Cheng Chan

Multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems with space-frequency block coding (SFBC) have a high computational complexity since the number of inverse fast Fourier transforms (IFFTs) required scales in direct proportion to the number of antennas at the transmitter. This paper proposes to generate the SFBC encoded signals of the various antennas in time domain by exploiting the time-domain signal properties and signal correlations among the various transmitter antennas, achieving a significant reduction in computational complexity. In particular, it is demonstrated that the time domain SFBC encoded signals of the various antennas can be obtained from the time domain signal of the first antenna. Therefore, the proposed scheme requires only one IFFT irrespective of the number of transmission antennas. In addition, a low-complexity peak-to-average power ratio (PAPR) reduction scheme is presented based on the proposed transmitter architectures.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 6 )