By Topic

Enhancement of photovoltaic solar module performance for power generation in the Middle East

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eveloy, V. ; Dept. of Mech. Eng., Pet. Inst., Abu Dhabi, United Arab Emirates ; Rodgers, P. ; Bojanampati, S.

Despite the abundance of solar energy in the Middle East, the efficiency and reliability of photovoltaic (PV) modules is severely affected by elevated cell operating temperature, which reduces the effectiveness of sun tracking techniques. In this study the potential of water-cooling to improve the electrical performance of stationary and sun-tracked PV modules is experimentally investigated for application at off-shore oil and gas facilities in the Persian Gulf. In parallel with measurements of PV module electrical characteristics and operating temperature, global solar irradiation, ambient air and cooling water temperatures, wind velocity and relative humidity are also recorded. In autumn conditions in the United Arab Emirates (24.43°N, 54.45°E), water-cooling is found to reduce PV module operating temperature by up to 30°C relative to passive cooling conditions, depending on operating conditions. Using water-cooling, power output is enhanced for a significant portion of the day for fixed geographical South facing modules (e.g., 22% at solar noon, and 13% at 2 p.m.) relative to passive cooling, and even more significantly for sun-tracked modules (e.g., 20% at 2 p.m.). Sun tracking enhances power output by 16% and 24% for passively- and water-cooled modules, respectively, at for example 2 p.m. The incorporation of water-cooling and sun tracking is the most effective, with enhancements in output power of on order 40% at for example 2 p.m. relative to passively-cooled, fixed South facing operation. In winter conditions (e.g., December), modest reductions in operating temperature and improvements in electrical performance are obtained using water-cooling and/or sun tracking, which may not justify the associated capital and operating costs.

Published in:

Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012 28th Annual IEEE

Date of Conference:

18-22 March 2012