Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Multilevel Inverter Scheme With Dodecagonal Voltage Space Vectors Based on Flying Capacitor Topology for Induction Motor Drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mathew, J. ; Dept. of Electr. Eng., Rajiv Gandhi Inst. of Technol., Kottayam, India ; Rajeevan, P.P. ; Mathew, K. ; Azeez, N.A.
more authors

This paper presents a multilevel inverter topology suitable for the generation of dodecagonal space vectors instead of hexagonal space vectors as in the case of conventional schemes. This feature eliminates all the 6n ± 1 (n = odd ) harmonics from the phase voltages and currents in the entire modulation range with an increase in the linear modulation range. The topology is realized by flying capacitor-based three-level inverters feeding from two ends of an open-end winding induction motor with asymmetric dc links. The flying capacitor voltages are tightly controlled throughout the modulation range using redundant switching states for any load power factor. A simple and fast carrier-based space-vector pulsewidth modulation (PWM) scheme is also proposed for the topology which utilizes only the sampled amplitudes of the reference wave for the PWM timing computation.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )