By Topic

Mining Spectrum Usage Data: A Large-Scale Spectrum Measurement Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sixing Yin ; Beijing University of Posts and Telecommunications, Beijing ; Dawei Chen ; Qian Zhang ; Mingyan Liu
more authors

Dynamic spectrum access has been a subject of extensive study in recent years. The increasing volume of literatures calls for a deeper understanding of the characteristics of current spectrum utilization. In this paper, we present a detailed spectrum measurement study, with data collected in the 20 MHz to 3 GHz spectrum band and at four locations concurrently in Guangdong province of China. We examine the statistics of the collected data, including channel vacancy statistics, channel utilization within each individual wireless service, and the spectral and spatial correlation of these measures. Main findings include that the channel vacancy durations follow an exponential-like distribution, but are not independently distributed over time, and that significant spectral and spatial correlations are found between channels of the same service. We then exploit such spectrum correlation to develop a 2D frequent pattern mining algorithm that can predict channel availability based on past observations with considerable accuracy.

Published in:

IEEE Transactions on Mobile Computing  (Volume:11 ,  Issue: 6 )