By Topic

Parallel Based on Cloud Computing to Achieve Large Data Sets Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heng Li ; Coll. of Comput. Sci., Chongqing Univ., Chongqing, China ; Dan Yang ; WeiTao Fang

This paper presents a CPCluster Map Reduce algorithm to achieve parallelism in cloud computing platform for clustering large, high-dimensional datasets. The proposed Map Reduce paradigm based clustering algorithm improves the traditional cluster algorithm in a parallelized way. It is scalability and has a good acceleration capability, and by adding the compute nodes, speedup is achieved. Experimental results show that the CPCluster Map Reduce algorithm works much better than traditional cluster algorithm, especially when the number of samples in the data sets increases.

Published in:

Computer Science and Electronics Engineering (ICCSEE), 2012 International Conference on  (Volume:1 )

Date of Conference:

23-25 March 2012