By Topic

Audio-Based Objectionable Content Detection Using Discriminative Transforms of Time-Frequency Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Myung Jong Kim ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea ; Hoirin Kim

In this paper, the problem of detecting objectionable sounds, such as sexual screaming or moaning, to classify and block objectionable multimedia content is addressed. Objectionable sounds show distinctive characteristics, such as large temporal variations and fast spectral transitions, which are different from general audio signals, such as speech and music. To represent these characteristics, segment-based two-dimensional Mel-frequency cepstral coefficients and histograms of gradient directions are used as a feature set to characterize the time-frequency dynamics within a long-range segment of the target signal. After extracting the features, they are transformed to features with lower dimensions while preserving discriminative information using linear discriminant analysis based on a combination of global and local Fisher criteria. A Gaussian mixture model is adopted to statistically represent objectionable and non-objectionable sounds, and test sounds are classified by using a likelihood ratio test. Evaluation of the proposed feature extraction method on a database of several hundred objectionable and non-objectionable sound clips yielded precision/recall breakeven point of 91.25%, which is a promising performance which shows that the system can be applied to help an image-based approach to block such multimedia content.

Published in:

IEEE Transactions on Multimedia  (Volume:14 ,  Issue: 5 )